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M-ary  POISSON DETECTION AND OPTICAL COMMUNICATIONS 

By Sherman Karp 
Electronics Research Center 

and 

Robert  M. Gagliardi 
.* University of Southern California 

* SUMMARY 

This repor t  presents  an investigation of the problem of maximum likeli- 

When the observables correspond to counts of emitted photo- 
hood detection of one of M Poisson processes  in a background of additive 
Poisson noise. 
electrons , the problem models a discrete  vers ion of a coherent M-a ry  optical 
communication sys tem using photon counters in the presence  of background 
radiation. 
probability cr i ter ion.  
(Poisson intensities wholly concentrated in a single counting interval)  a r e  
demonstrated.  
of e r r o r  probabilities , pulse widths, signal-to-noise ra t io ,  and channel 
capacity. Behavior as a function of number of intensit ies M is a l so  dis- 
cussed. 
termining power requirements in an  optical pulse position modulation system. 

Consideration is given to an  average distance and a detection 
The advantages of an M-ary-pulsed intensity s e t  

The performance of such intensity se t s  is exhibited in terms 

By appropriate conversion these la t te r  resul ts  m a y  be used for  de- 

I. INTRODUCTION 

The application of detection theory to the field of optical communications 
has  been a subject of increasing interest .  Since the output of a photodetect- 
ing surface i s  often modeled as sequences of electron "counts", and since 
optical photoelectrons have been readily accepted as obeying Poisson statis- 
t ics  , the analysis problem i s  basically one of signal detection involving 
Poisson processes .  
Reiffen and Sherman [ref .  11 , and further contributions were  made  by 
Abends [ref.  21 , Kailath [ref. 31 , and Helstrom [ref.  41 . In this report  
the general  problem of M-ary detection based upon observations of events 
described by a t ime-discrete  Poisson process  is investigated. 

The problem was f i r s t  formulated in this context by 

Though the formulation of the problem i s  of a general  nature,  the 
principal application i s  to optical communications , and the pract ical  l imits  
of such a sys tem will govern the mathematical assumptions imposed. 
Consideration i s  given to the divergence cr i ter ion for detection and to a 
cr i ter ion of maximization of probability of detection, both readily accepted 
a s  suitable design objectives. The intensity set  yielding optimal perform- 
ance based on special cases  of these cr i ter ia  i s  shown to be a special type 
of orthogonal intensity set ,  composed of M disjoint intensit ies wholly con- 
centrated in  a counting interval. 
signal se t  in binary detection had been shown by Abends 
a signal-to-noise ratio cr i ter ion,  and by Kailath [ref. 31, based on distance 
c r i te r ia .  
Poi s son detection. 

Previously, the superiority of this type of 
[ref. 21 , based on 

This  report  represents  an extension of these resul ts  to M-ary 



The formulation of the problem follows that of Reiffen and Sherman 
[ re f .  13 . 
obey a Poisson process  i f  the probability of exactly k (an integer) occurring 
is given by 

The occurrence of events over an  observed interval A T i s  said to 

P ( k )  = b A T l k  e -nAT . 
k! 

4 The parameter  n i s  the average ra te  of occurrence and is called the intensity 
of the process .  The average number of events occurring is  then n A T  and i s  
often called the level of the process .  If the events occur over a sequence of 
AT intervals in which the intensity may vary  f r o m  one interval to the next, 
but i s  constant over each interval,  we have a discrete  t ime-varying Poisson 
process .  In photodetection each event corresponds to the emission of an 
electron, which occurs  upon a r r i v a l  of a photon, each photon having a fixed 
energy. The level is  therefore  proportional to the average energy received 
p e r  interval, while the intensity n i s  proportional to the average power ( see  
section V ) .  
a r e  equivalent t o  energy and power constraints on the incident radiation. 

Thus, constraints upon level and intensity in Poisson processes  

In optical P C M  communications, information i s  transmitted,  a s  shown 
in  Figure 1-a ,  by sending a n  optical signal intensity modulated with one of a 
se t  of possible intensities. The modulated signal is  corrupted by fixed inten- 
si ty background radiation during reception, resulting in a process ,  the inten- 
si ty of which i s  the sum of each intensity. The output of the photodetecting 
surface at the receiver  i s  then a time-varying Poisson process  of electron 
counts having the received intensity. 
selects  one of a set  of M intensities for  the optical process .  The receiver ,  
a f te r  photodetection, counts the number of electrons in each of M intervals 
A T seconds long and attempts to maximum likelihood detect which of M 
intensities i s  controlling the observed process .  
suitably shor te r  than the inverse bandwidth of the intensities so that the inten- 
s i ty  remains approximately constant over A T. 
counting interval is exactly known a t  the receiver  by a perfect synchronization 
link. 
u r e  1-b. 
the interference appears  a s  additive Poisson noise. 
independent Poisson  processes  i s  itself a Poisson process  having an  intensity 
equal to the sum of the intensities.) The assumption of additive Poisson noise implies 
that the optical bandwidth is in general wider than the receiver bandwidth. This is 
referred to a s  "classical" counting. To obtain deviations from "classical" counting 
takes a considerable effort and requires very special circumstances not normally en- 
countered. The model is idealized since other sources of interference, such a s  thermal 
noise and dark currents, are neglected. With this model the M-ary Poisson detection 
problem can be formulated a s  follows. Let a sequence of events obeying a discrete 
Poisson process occur over a sequence of M disjoint intervals A T  where M AT = T 
and the count over each interval is independent of all others. Let the observed process 
be controlled by one of M possible intensity vectors n + n , q=l  , 2 , . . . M, where 

- q  -0 

In an  M-ary  sys tem the t ransmit ter  

It is assumed that A T  i s  

In addition we a s sume  the 

Thus, the above sys tem can be modeled by the block diagram in Fig- 
The input signal corresponds to  a discrete  Poisson process ,  while 

(Recall  that the s u m  of 
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PHOTO- I NT E N S ITY 
MODULATOR - DETECTOR 

(4 

BACKGROUND 
RAD IAT IO N 

? 

MAX. LIKE, 
DECISION COUNTER 

+ (b) POISSON 
DISCRETE 

PROCESSES - 

NOISE 
PROCESS 

MAX. LIKE, 
DETECTOR * DECISION 

Figure  1. - -  Optimum rece iver  

zo = {no, n 0’ 0 
n , . . .no} 

n qi’ no, - = . o  . 
th The non-negative n is thus the intensity of n during the i interval.  Under 

a fixed energy cons si raint for each signal, i t  Fgrequi red  that 

M 

x n q i A T  = N, for  a l l  q . 
i= 1 

( 3 )  

The intensity vector n 
imposed upon the desyged intensity. Let the corresponding number of events 
occurr ing in the ith interval be ki. The problem then i s  to  determine which 
of the possible intensity vectors  ns i s  controlling the received Poisson proc- 
e s s  by observing the sequence of independent counts k = {kl, k2, k . . .kM} 
Under a maximum likelihood detection cri terion and a pr ior i  equi lze ly  
intensit ies,  it is  well known [ref.  11 that the optimal tes t  i s  to f o r m  the 
likelihood functions: 

represents  constant intensity background noise super-  

3 



i= l  

6 
where 

a = log [(nqi  t n 0 ) A T ]  (5)  
qi 

4 
and select  n t n a s  the t r u e  intensity i f  no other likelihood function ex- 
ceeds A q ( k F  If%olikelihood draw occurs  ( m o r e  than one A (k) i s  maximum),  
i t  i s  knownthat any randomized choice amongst the maximaq i s  equivalent. 
In the following a purely random selection in the case  of likelihood draws  i s  
used. 
o. Is, a n  operation readily performed by a digital c ros scu r re l a to r  [ ref .  11 . 

Equation (4) can be interpreted a s  a c rosscor re la t ion  of k with the 

qi  

4 



11. THE DIVERGENCE O F  THE DETECTION TEST 

The divergence between two intensities n. and n of the above t e s t  is 
-J -9 *. defined a s  

u 
where 

A = A . ( k )  - A (k)  
j q  J -  q -  

and E ( A )  i s  the conditional average  of A with respec t  t o  k given the inten- 
s i ty  nf!j Abends [ref .  21 has  shown that f o r  M = 2 (binary zetection) and the 
condzion n 
by a ''puls&lr type of intensity, where the level  of the p rocess  is  wholly con- 
centrated i n  a single-count interval.  
by showing that, under a total  energy constraint, other suitable f o r m s  of 
"distance" a r e  maximized by similar "pulsed" intensit ies.  
notions h e r e  to  the M-ary  case  and the equal energy constraint  of Eq. ( 3 ) .  

= 0, the divergence normalized by the var iance  of A is maximized 

Kialath [ re f .  31 has  extended th is  r e su l t  

We extend these  
I 

I 
The average  divergence of a n  M-a ry  intensity se t  will be defined a s  I 

Since E k / j (k . )  = (nji t n ) AT, the average divergence becomes i 1 0 

n..AT 
(nqi t no)AT]} - K 

where  K = n A T .  The non-negativeness of the  n. .  and n allows one to  
0 J 1  0 

write:  

5 



f- 1 

3 

as a n  upper bound under the constrain of Eq. ( 3 ) .  
holds if the second t e r m  i n  Eq.  (8)  i s  zero ,  requir ing n j # q to  be z e r o  
for  all i at which n i s  non-zero; that i s ,  the  intensi t ies  mus t  be mutually 
disjoint.  The second equality in  Eq. ( 9 )  holds i f  n = N for  one i and n. .  = 0 
f o r  all other i. Thus, the upper bound for  5 occur s  i f  the intensit ies cf the 
se t  a r e  disjoint and wholly concentrated in single counting interval .  This is 
sat isf ied with the s e t  

However,  the f i r s t  equality 

j i' 
q i  

j i  

- 

N = { N / b T  8 , q =  1 ,  2 ,  . . .  M 
-q 

where  8 
intensity set  with each intensity occupying one of M in te rva ls .  
cant to  note that any disjoint intensity se t ,  no m a t t e r  how many intervals  
a r e  used,  yields the bound of the f i r s t  inequality of Eq. ( 9 ) ,  but only the 
pulsed intensity se t  of Eq. (10 )  yields the second bound. Thus, of all dis-  
joint  intensity se t s ,  only the pulsed s e t  maximizes  D, which immediately 
impl ies  only M in te rva ls  a r e  required fo r  maximization with M intensit ies.  
Last ly ,  i t  may be  noted that  with a n  average  energy  constraint  over  all inten- 
s i t ies :  

is the Kronecher delta.  The above r ep resen t s  an  M-ary  "pulsed" 
iq  It is signifi- 

M 1 nji4T = N 

j i  

instead of Eq. ( 3 ) ,  n..  5 MN/A T resu l t s  and Eq. (9 )  becomes  
J1 

which exceeds that previously derived. F u r t h e r m o r e ,  the upper  bound in 
Eq. (12 )  occurs  when M - 1 intensi t ies  a r e  z e r o  everywhere,  and one inten- 
s i ty  is  a pulsed intensity having a value M N / A T .  

6 



111. DETECTION PROBABILITY 

The optimality of the M-a ry  pulsed intensity se t  has  been shown, based 
This section will show that in cer ta in  cases  this on a divergence cri terion. 

superiority a l so  extends over a cri terion based on maximization of the detec- 
tion probability. 
general  intensity set  { n } is required.  
writing the conditionalT%obability density of A q  (k) ,  and then integrating over 
regions of co r rec t  decisioning. However, Aq (k) in Eq. (4) i s  a weighted sum 
of independent Poisson var ia tes  which i n  general i s  - not a Poisson variable.  
Rather,  the t rue  density involves an M-fold convolution of modified Poisson 
densities, yielding a resul t  that i s  difficult to integrate.  Instead an  al terna-  
tive expression for the detection probability is used. 
appendix and has  the form: 

% 

F i r s t  an expression for  the detection probability for a 
Usually this is  obtained by f i r s t  

C 

It was derived in  the 

where N is the intensity energy constraint of Eq. ( 3 ) ,  RM i s  the space of a l l  
M-dimensional vectors  - j having non-negative integer components, and 

M Inqi + n )AT]j i  

i= 1 
9 ( q , j )  = Il - ji! 0 exp [-MnoAT] . 

The derivation of Eq. (1 3 )  follows an  analogous procedure used in Gaussian 
channels ( s e e  Viterbi {ref. 5}), but i s  somewhat complicated by the fact that 
likelihood draws occur with EOE- z e ro  probability. 

Determination of the intensity set{ n ) for which PD i s  maximum i s  of 
This has  been obtained for  tG9part icular  cases  of interest:  in te res t .  

Case  I - M = 2 and symmetr ic  intensity sets :  - 

Let M = 2 and consider the se t  of all possible symmetr ic  intensity se t s ;  
i. e . ,  i f  - nl = e, b}, then n2 = {b, a}. 
f o r  any intensity set  of this type, the v e c t o r s j  for  y h i c h  9 ( 1 , j )  - < 
when a>b is simply the s e t i  = {j 
of Eq. ( 3 )  and letting nl = (., N!$2 and I I ~  = {N-a, a}, 2 2 < a - < N, the de- 
tection probability is: 

For  this case  i t  is easy  t 3  show that 
( 2 , j )  

j } such that j ,  - z jz .  Using the constraint  

7 



P =  D e -(NtK)ko 2 

co co 

+ .c c 
j 1 = 0  j = j  2 1  

j l - l  c 
j 2 =  0 

j l  ( N  - a t K )  1 
where again K = n A T. Differentiating with respec t  to  Ita1' yields 

0 

da 

- 

+ 
00 c 

j l = O  

00 c 
j =j  
2 1  

j l  

j ,! j,! 

- ( N t K )  e 
2 

j l = l  j 2 = j l - 1  

where A = (a t K )  and B = ( N  - a i- K).  
above substantiates PD a s  a monotone increasing function of a. 
is maximized with "a" having i t s  maximum value, a = N, corresponding to 
the pulsed intensity set  of ( 1 0 )  with M = 2. 

Since A and B a r e  positive, the 
Therefore  PD 

8 



Case  I1 -- Any My N/K - 0 

The limit above implies a high background noise level situation. We ob- 
se rve  h e r e  that 

% 

e 
- -N 1 max \k (q , j )  

- - T I  e - N  c max 9 { exp  [ 5 j i I n [ l  + %]]I (16) 

i= 1 

p D -  M 
M q  R c, 

RM 

-e E-0 2 M 1 C max[p q f ji nqiAT’/K] 
RM i= 1 

-MK n ( l / j l !  ) and the limit  follows since n .AT/K< - N/K-0. where C = e 
q1 i 

Now, with the constraint of Eq. ( 3 ) :  

i 

where 

= max {ji} . 
i j max 

Thus: 

RM 

The upper bound occurs  when 

max{exp 1 ji  nqiAT/K} = exp {jmaxN/K} 
i= 1 

9 

which c lear ly  is t rue  for  the pulsed intensity set of Eq. ( l o ) ,  signifying 
asymptotic optimality for any M. 

9 



To determine optimal intensity se t s  (e i ther  global o r  local)  in the general  
case,  using Eq. (13 ) ,  st i l l  remains an elusive task.  It has  been conjectured 
by many (e. g. , see  refs. [11 and [ 3 1  ) that the pulsed intensity se t  is, in fact ,  
the t rue  optimal set ,  but to  the authors '  knowledge a rigorous proof has  not 
been shown. 

d 
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IV. ERROR PROBABILITIES WITH PULSED INTENSITY SETS 

In this section the performance of the pulsed intensity se t  in M-ary  de-  
tection i s  investigated by evaluating the e r r o r  probability PE = l - PD. 
can be obtained by using Eq. (13), but the computation can be m o r e  con- 
veniently handled by noting that for  the pulsed intensity se t  of Eq. (10) {A } 
of Eq. (4) constitutes a se t  of independent, Poisson random variables.  T#e 
variable A 
otherwise (2 = nAT). Recall, i f  the qth intensity is sent,  a c o r r e c t  decision 
will  be made  with probability 1 / r  t 1 i f  A 
remaining M - 1 - r. Therefore ,  when a 8  possibil i t ies a r e  considered, the 
conditional detection probability i s  

This 

k 

has level (N t K)  i f  the qth intensity is sent,  and has  level K 

equals r other A ' s  and exceeds the 

I The right s ide i s  independent of q and thus represents  the average detection 
probability. By applying the identity: 

1 ,M-1 M- 1 
(M - 1 ) '  

one can rewri te  the e r r o r  probability a s  

1 e -(NtMK) - f [ ( N  t K):; - (NtK) 

x= 1 M PE(N, K ,  M) = 1 - PD = 1 - 

where  

a 
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The parameter  P (N, K, M) has been digitally computed by the authors  f o r  
var ious values of%, K, and M. An exemplary plot is  shown in F igure  2 in  
which PE (N, 3, M) h a s  been plotted fo r  var ious M as a function of N. It is 
of paramount significance to note that P depends on both signal energy N 
and noise energy K in  the counting interval,  and not simply on their ratio.  
This fact  is  emphasized in  Figure 3 in which PE (N,  K, 2 )  is plotted as  a 
function of K for two fixed rat ios  N/K. 
noise energies distinguishes the Poisson detection problem f r o m  the anal-  
ogous coherent gaus s ian channel problem. Note that the interfering noise 
c ~ c r g y  K dzpezdr  cnly n p a ~  the hackgrnrind energy in the interval A T, which 
is  the width of the t ransmi t ted  intensity pulse. 
t ical  systems is precisely their ability to  remove the effect of background 
noise by making A T small ,  and has  been emphasized in the l i t e ra ture  
(ref.  6).  :k This fact  can be i l lustrated graphically, using Eq. 20, by con- 
sidering a binary Poisson channel (M=2) sending information a t  a ra te  1/T 
bi ts /sec.  
P E ( N ,  noTA T/T, 2 )  as a function of A T/T, for fixed intensity energy N and 
background noise energy per bit interval  noT. 
The resul ts  indicate the continuous improvement obtained by decreasing the 
"duty cycle" AT/T,  the ultimate limit corresponding to A T  = 0. The 
improvement, of course,  is made  at the expense of information bandwidth 
and peak power (both inversely proportional to  A T) .  Surprisingly, the 
improvement is quite smal l  at low values of N ,  and the increase  in band- 
width may not b e  worth the improvement obtained in  e r r o r  probability. 

E 

This dependence on both signal and 4 

,' 
The pr ime advantage of op- 

The effect of the parameter  A T is  indicated by plotting 

This i s  shown in Figure 4. 

A quantity of par t icular  in te res t  to  communication engineers i s  the 
This is often denoted [ ref. 71 as the detected "signal-to-noise ratio". 

ra t io  of the square of average electron count with no noise to  the variance 
of the count when noise is present.  F o r  Pzisson counting s ta t is t ics  with 
pulsed intensities this  becomes (S/N) = N /(NtK).  The behavior of PE of 
Eq. (20) a s  a function of K for fixed (S/N) is  i l lustrated in F igure  5 for a 
binary system. The resu l t s  again indicate the ambiguity in using S/N as a 
design criterion. The asymptotes show the wide functional variation of PE 
as K increases  f r o m  zero.  

As  i l lustrated in  F igure  2, the e r r o r  probabilities increase  as M in- 
creases. However, the use  of a single se t  of curves  to  compare var ious 
M-ary  systems i s  misleading. An M-ary sys t em with A T second counting 
intervals  t ransmi ts  log2M bi ts  of information in  MA T seconds. 
communicates at a ra te  

It therefore  

;kAlso Karp, S. , and Gagliardi, R. : A Low Duty Cycle Optical Communi- 
cation System. Presented  at Eastcon Convention, Washington, D. C. , 
October 1967. 
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If the t ransmiss ion  ra te  is normalized for each Ma A T must  be readjusted 
to  maintain a fixed rate R = R . The effective noise level  per  counting 
interval  is then 0 

210g2M 
n A T  = nolog2M/MRo = (2) M = 2Kolog2M/M (22) 
0 

where K Thus, for  a comparison 
of differgnt M sys tems,  each with fixed information r a t e s ,  one should com- 
pare  the parameter  P (N, 2K log M/M, M) for each N.  If this adjustment 
is made  using Eq. ( 2 8 ,  the cuvves of Figure 6 are  generated,  with KO = 1. 

is the noise energy in an interval 1/2Ro. 
L) 

The curve  corresponding to  M = 06 is  a l so  shown, and i s  determined by 
taking the limit of PE (N,  2Kolog M/M, M) a s  M- 00. 

by replacing K i n  Eq. (20) by K '  = 2K log M/M and noting: 
This can be  obtained 

0 

-(NtMK')- lim e 
M-oO 

(1 t alM - 1 - 1  f o r x ?  1 
Ma lim 

M - - W  

M -  1 O f o r x  = 1 

1 f o r x >  1 
lim 
M-oo - 

Using the above resu l t s  in 

-N 2 CNX e 
X! 

lim P E ( N ,  2K log M/M, M) - 1 - 
0 

x=2 M - 0 0  

-N = 1 - (1 - Ne-N - e -N)  (1 t N)e 

which i s  plotted as M = oo in Figure 6. 
precisely the probability of an event count of ze ro  o r  one occurr ing in a 
noiseless  counting interval  of signal energy N. 
pretation. 
normalized noise energy pe r  interval,  K '  = 2K log M/M, approaches zero. 
The probability that m o r e  than one event will oFcur in  any one of M - 1 
independent non-signalling intervals  having noise energy K '  is given by 

It is  noteworthy that Eq. (23) is  

This has the following in te r -  
As M - 00 the number of intervals becomes infinite, but the 

M- 1 
1 - (1 t K'e -K')  . 

17 
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This approaches zero as M - 00, indicating that counts of zero or  one will 
occur in every such interval with probability one. Furthermore, there wil l  
be an infinite nupber of intervals with a zero count and with a one count. 
Therefore, a s  M- 00, an er ror  will  occur (with probability approaching one) 
whenever the signalling interval has a count of zero or one, and an e r ro r  
will never occur when the latter interval has a count greater than one; hence, 
Eq. (23). 

.. 

It is also' interesting to note in Figure 6 that best system operation, in 
,)terms of minimal e r ror  probability, does not always correspond to M- 00. 

For example, if KO- 0,  it is-wsy to showlusing 
(M - l ) e  

In fact, it can be shown that best M operation depends strongly on the amount 
of background noise KO. 
Equation (ZO)] that for M finite PE(N,K', M) 
monotonically decreasing with M and always less than the M = 00 value of 
EqI (23). Thus, with negligible background noise, system operation im- 
w s  eth decreasing M and is best f a r  M = 2. Physically, this means 
the noise reduction advantages due to  decreasing A T  as M increases does 
not offset the increasing e r ro r s  due to the larger nwmbers of likelihood 
draws that wi l l  occur. (Recall a random choice is made in the event of 
draws. ) For large amounts of background noise, however, the converse is 
true, and M = 00 does yield minimal error  probability. 

/M, which is 

- 

It should be emphasized that a fixed energy constraint was imposed on 
the signal intensity, and therefore the time average power Po = N / T  = 
NR/log M actually approaches zero as M -00. 
of the source had been fixed at some level Po, then N must be replaced by 
P log M/R in the previous equations, and it can be seen that P - 0  as 

00 for any Po > 0. This result may be compared to a sir&ar.resuIf 
for an additive gaussian channel (ref. 8) in which zero e r ror  Probability 
occurred only if P 

If the average power level - 

satisfied a condition dependent on the rate R. > 

0 

The PE results above are useful f o r  determining the channel capacity 
(maximum information rate) of an M-ary pulsed intensity set. Assume a 
transmitter sends one of a group of M-pulsed intensities every T second, 
with each pulse having width A T  = T/M. If the transmitter operates at a 
fixed rate Ro, then again T = log M/Ro a s  given by Eq. (21). The chaw1 
can now be represented as a symmetric channel in whichieach ogthe M 
equal likely intensities is converted to itself with probaklility 1 - PE,*and is 
converted to any of the other intensities withvequal probability 
PE/M-1. The channel capacity for this type of system is known to be 

log PE1ogM-$ pE t (1 - PE) log (1 - PE) 
c. = ' r241 

where PE = P (N, n log M/MR , M). Again the signal intensity energy h, 
the backgroun8noiseOpower n 
sidered. Then, as M - 00 ,E; approaches theqimit in Eq. (23), while the 

0 

%nd the rate R to be held fixed arescon- 

channel capacity has the limit - .  

1 (25)  
-N C - [  1 - (1 t N)e ]R, 

-E 



for  N finite. 
approach any  des i red  rate with a finite signal energy by using an  increasingly 
l a r g e r  number of intensit ies and adjusting R 
each level i s  t ransmit ted with a non-zero e r r o r  probability, and the infor- 
mation bandwidth and peak power become infinite. Again introduction of a 
t ransmi t te r  power constraint ,  ins tead of a n  energy constraint, will yield 
operation at a capacity R with a ze ro  e r r o r  probability, as M- M . 

The above indicates information t r ans fe r  can be  forced to  

at the t ransmi t te r .  However, 
0 

- 
0 
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V. CONCLUSIONS 

This r epor t  has  investigated the M-ary Poisson detection problem, 
defined as maximum likelihood detection of one of a se t  of M discre te  
Poisson processes  in  the presence of an additive d iscre te  Poisson noise 
process .  
communication sys tem in  which the observables represent  counts of 
photoelectrons, the signals represents  intensity modulated CW optical 
sources ,  and the noise represents  background radiation received within the 
optical bandwidth. The photoelectron count can then be  modeled as a time- 
varying Poisson process ,  the average rate of which is  proportional to  the 
sum of the intensit ies of the modulated source and the background radiation. 
In pract ical  operation the intensity of the optical source i s  a continuous 
process ,  but the analyses  m a y  be put on a discrete  bas i s  by partitioning 
the signalling intervals  into subintervals over which the intensity is  taken 
to  be constant. The above Poisson model is examined, and the advantages 
of a pulsed type of intensity se t  is demonstrated. The la t te r  corresponds 
to  an  optical sys tem using pulse position modulation in which information 
i s  t ransmi t ted  by a bu r s t  o r  pulse of optical energy located i n  one of a set 
of pulse positions. The performance of such a system, in t e r m s  of pulse 
width and numbers  of pulse positions, i s  presented herein.  
this repor t  basically represent  theoretical  limits to  which an  optical link 
can approach, since the deleterious effects of receiver  ( thermal )  noise 
have been neglected. This la t ter  assumption becomes valid, for  example, 
when photomultipliers are used in detection, and the background radiation 
collected at the rece iver  is the predominant source of noise. 

The problem model represents  a d iscre te  vers ion of an  optical 

The resu l t s  of 

The analyses  and performance results a r e  in  t e r m s  of N and K,  the 
average electron counts due to signal and noise, respectively. However, 
these r e su l t s  may  be easily converted to  average power requirements  using 
the relat ions 

N = 7jP M/hfB 

K = qPn/hfB 

S 

where Ps and P 
6.62 x 
cation), f is the optical frequency of the CW source,  and B = l / A  T. 
average power P and P 
introducing space losses  and rece iver  optics (e. g. ,  ref. 9, Ch. 1, 2 ) .  Exact 
synchronization has been assumed h e r e  between t ransmi t te r  and receiver  at 
all t imes.  
the effects of photomultiplier statist ics,  saturation, and dark  cur ren ts .  

a r e  the average signal and background noise power, h = 
10-34, n q  i s  the photodetector efficiency (including photomultipli- 

The 
can be further converted to  t ransmit ted power by 

S n 

In addition to  rece iver  thermal noise, the analysis  has excluded 
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APPENDIX 

This appendix presents  the derivation of Eq. (13). The average  proba- 
bility of cor rec t ly  determining the t r u e  intensity in  M-ary  t ransmiss ion  is  

q= 1 

where P(D/q) i s  the probability of cor rec t  detection, given that n 
the t r u e  intensity. 
observed vector  k - = i = { j l ,  j,, j3, . . . jM}, g i v e n n  -q t n  -0 )  is 

t n is  
Now the conditional probability of the occurrace-o? an  

i=l I 

(A-2) 

where N is the energy constraint  given in  Eq. ( 3 ) .  
probability P(D/q) is then obtained by summing over the set of a l l 1  such 
that a c o r r e c t  decision is  made. 
intensity i s  used, i f  A q i s  selected a s  being the la rges t .  
ceeds Aq but r of the A equals A,, the rece iver  will be c o r r e c t  with a 
probability of 1/r + 1, assuming a purely random selection is  made  when 
likelihood equalit ies occur.  N o w i  i s  an  M-dimensional vector with non- 
negative integer  components, and the space of all such vectors  is denoted 
as RM. The conditional detection robability P(D/q) can therefore  be 
writ ten by summing over a l l 1  E Rdleading to  a co r rec t  decision. Thus, 

The conditional detection 

th A cor rec t  decision will occur,  when the q 
If no other A t  ex- 

(A-3) 

where J 

t o i h e s e  r At'$, fo r  simplic%y, J 

is  the se t  of i E RM such that no other  At exceeds A and r other 
A ' s  eq%l A . If we let I denote the r dimensional index set%orresponding 

can be denoted symbolically as  
9' 

(A-4) 
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Substituting Eq. (A-3) into Eq. (A-1) yields a general  expression for  the 
detection probability : 

q = l  r = O  J 
q r  

(A-5)  

+ 

Now by examining carefully the set J 
f i e d .  
wri te  : 

the expression above can be simpli-  

i 
Making iise of the monotonicity qr '  of the exponential function. one can 

J = {i C R ~ :  exp ( A = exp (max A ) = exp A,, k qr 9 k 

j 
M M 

i= 1 k i=l 
+ no)ATIJ i  = max n [bk i t  no)AT] i 

M 

i= 1 
= n [bti t no)A T] j i ,  t CI 

q 

= {i CRM: *(q,L) = maxQ(k,. j)  = Q ( t ,  j ) ,  t CIq} . (A-6)  
k 

Thus Jqr can be alternatively defined as  the set  of j fo r  which 9 (9, j )  is  one 
of r t 1 maximum 
to  r other s e t s  J t r ,  t C  Iq, or  correspondingly, a p o i n t 1  in J t r ,  tCIq,-exists 
such that Q (t,  j) = \k ( q , j ) .  Note that the set  of subspaces {Jqr} a r e  d is -  
joint for different r but not for  different q. 
summation 

(k, 3 functions. This  means  e v e r y 1  in  Jqr a l s o  belongs 

With these facts  consider the 

(A-7)  

for  fixed r. 
other t e r m s  having the same value, one fo r  eacg  p o i n t i o  of Jtr, t CI . The 
total  contribution to the s u m  above f r o m  this  set of r t 1 terms is theX" 

For  any t e r m  of the sum, say  Q (q j o ) / r t l ,  t he re  exists r 

the las t  equation following s i n c e i  c J Thus, overlapping points in  the 

summation of Eq. (A-7)  contribute a tots amount given by Eq. (A-3) .  

therefore  follows that 

0 9 r '  
It 



(A-9) 

where u J 
sum.rn&io#Tn Eq. (A-5) and using Eq. (A-9) all8ws one to rewr i te :  

is the union over of the subsets {J r} . Inverting the o rde r  of 

(A- 1 0 )  

where  we have employed the fact  that  (9” Jqr} a r e  disjoint subspaces,  and 

the sum over a l l  r spans the whole space RM. Equation (A-10) i s  Eq. ( 1 3 )  
of the report .  
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